Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 5 of 5 results
1.

Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury.

blue Magnets E. coli
ACS Sens, 8 Jul 2020 DOI: 10.1021/acssensors.0c00855 Link to full text
Abstract: We present a new concept for whole-cell biosensors that couples the response to Hg2+ with bioluminescence and bacterial aggregation. This allows us to use the bacterial aggregation to preconcentrate the bioluminescent bacteria at the substrate surface and increase the sensitivity of Hg2+ detection. This whole-cell biosensor combines a Hg2+-sensitive bioluminescence reporter and light-responsive bacterial cell-cell adhesions. We demonstrate that the blue luminescence in response to Hg2+ is able to photoactivate bacterial aggregation, which provides a second readout for Hg2+ detection. In return, the Hg2+-triggered bacterial aggregation leads to faster sedimentation and more efficient formation of biofilms. At low Hg2+ concentrations, the enrichment of the bacteria in biofilms leads to an up to 10-fold increase in the signal. The activation of photoswitchable proteins with biological light is a new concept in optogenetics, and the presented bacterial biosensor design is transferable to other bioluminescent reporters with particular interest for environmental monitoring.
2.

Blue-Light-Switchable Bacterial Cell-Cell Adhesions Enable the Control of Multicellular Bacterial Communities.

blue Magnets E. coli Control of cell-cell / cell-material interactions Extracellular optogenetics
ACS Synth Biol, 15 Apr 2020 DOI: 10.1021/acssynbio.0c00054 Link to full text
Abstract: Although the fundamental importance and biotechnological potential of multibacterial communities, also called biofilms, are well-known, our ability to control them is limited. We present a new way of dynamically controlling bacteria-bacteria adhesions by using blue light and how these photoswitchable adhesions can be used to regulate multicellularity and associated bacterial behavior. To achieve this, the photoswitchable proteins nMagHigh and pMagHigh were expressed on bacterial surfaces as adhesins to allow multicellular clusters to assemble under blue light and reversibly disassemble in the dark. Regulation of the bacterial cell-cell adhesions with visible light provides unique advantages including high spatiotemporal control, tunability, and noninvasive remote regulation. Moreover, these photoswitchable adhesions make it possible to regulate collective bacterial functions including aggregation, quorum sensing, biofilm formation, and metabolic cross-feeding between auxotrophic bacteria with light. Overall, the photoregulation of bacteria-bacteria adhesions provides a new way of studying bacterial cell biology and will enable the design of biofilms for biotechnological applications.
3.

Red/Far-Red Light Switchable Cargo Attachment and Release in Bacteria-Driven Microswimmers.

red PhyB/PIF6 E. coli MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
Adv Healthc Mater, 9 Oct 2019 DOI: 10.1002/adhm.201900956 Link to full text
Abstract: In bacteria-driven microswimmers, i.e., bacteriabots, artificial cargos are attached to flagellated chemotactic bacteria for active delivery with potential applications in biomedical technology. Controlling when and where bacteria bind and release their cargo is a critical step for bacteriabot fabrication and efficient cargo delivery/deposition at the target site. Toward this goal, photoregulating the cargo integration and release in bacteriabots using red and far-red light, which are noninvasive stimuli with good tissue penetration and provide high spatiotemporal control, is proposed. In the bacteriabot design, the surfaces of E. coli and microsized model cargo particles with the proteins PhyB and PIF6, which bind to each other under red light and dissociate from each other under far-red light are functionalized. Consequently, the engineered bacteria adhere and transport the model cargo under red light and release it on-demand upon far-red light illumination due to the photoswitchable PhyB-PIF6 protein interaction. Overall, the proof-of-concept for red/far-red light switchable bacteriabots, which opens new possibilities in the photoregulation in biohybrid systems for bioengineering, targeted drug delivery, and lab-on-a-chip devices, is demonstrated.
4.

Blue Light Switchable Bacterial Adhesion as a Key Step toward the Design of Biofilms.

blue Magnets E. coli in vitro Control of cell-cell / cell-material interactions Extracellular optogenetics
ACS Synth Biol, 17 Aug 2017 DOI: 10.1021/acssynbio.7b00197 Link to full text
Abstract: The control of where and when bacteria adhere to a substrate is a key step toward controlling the formation and organization in biofilms. This study shows how we engineer bacteria to adhere specifically to substrates with high spatial and temporal control under blue light, but not in the dark, by using photoswitchable interaction between nMag and pMag proteins. For this, we express pMag proteins on the surface of E. coli so that the bacteria can adhere to substrates with immobilized nMag protein under blue light. These adhesions are reversible in the dark and can be repeatedly turned on and off. Further, the number of bacteria that can adhere to the substrate as well as the attachment and detachment dynamics are adjustable by using different point mutants of pMag and altering light intensity. Overall, the blue light switchable bacteria adhesions offer reversible, tunable and bioorthogonal control with exceptional spatial and temporal resolution. This enables us to pattern bacteria on substrates with great flexibility.
5.

A fully genetically encoded protein architecture for optical control of peptide ligand concentration.

blue AsLOV2 PC-12
Nat Commun, 10 Jan 2014 DOI: 10.1038/ncomms4019 Link to full text
Abstract: Ion channels are among the most important proteins in biology, regulating the activity of excitable cells and changing in diseases. Ideally it would be possible to actuate endogenous ion channels, in a temporally precise and reversible manner, and without requiring chemical cofactors. Here we present a modular protein architecture for fully genetically encoded, light-modulated control of ligands that modulate ion channels of a targeted cell. Our reagent, which we call a lumitoxin, combines a photoswitch and an ion channel-blocking peptide toxin. Illumination causes the photoswitch to unfold, lowering the toxin's local concentration near the cell surface, and enabling the ion channel to function. We explore lumitoxin modularity by showing operation with peptide toxins that target different voltage-dependent K(+) channels. The lumitoxin architecture may represent a new kind of modular protein-engineering strategy for designing light-activated proteins, and thus may enable development of novel tools for modulating cellular physiology.
Submit a new publication to our database